Skip to main content

Children's National Hospital trial shows bionic pancreas improves Type 1 diabetes management compared to standard insulin delivery methods

A device known as a bionic pancreas, which uses next-generation technology to automatically deliver insulin, was more effective at maintaining blood glucose (sugar) levels within normal range than standard-of-care management among people with Type 1 diabetes, a new multicenter clinical trial has found. The trial, conducted partly at Children’s National Hospital, was primarily funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health, and published in the New England Journal of Medicine.

Automated insulin delivery systems, also called artificial pancreas or closed-loop control systems, track a person’s blood glucose levels using a continuous glucose monitor and automatically deliver the hormone insulin when needed using an insulin pump. These systems replace reliance on testing glucose level by fingerstick, continuous glucose monitor with separate insulin delivery through multiple daily injections, or a pump without automation.

“A diagnosis of Type 1 diabetes can be overwhelming for a child and their family,” said Fran Cogen, M.D., C.D.C.E.S., principal investigator at Children’s National and director of the Childhood and Adolescent Diabetes Program. “It is extremely important to monitor and manage glucose levels throughout the day to prevent serious complications like eye problems, kidney disease, heart and blood vessel disease. This new technology may give patients and families a sense of relief from some of the daily stressors that come with the diagnosis of this chronic disease.”

Compared to other available artificial pancreas technologies, the bionic pancreas requires less user input and provides more automation because the device’s algorithms continually adjust insulin doses automatically based on users’ needs. Users initialize the bionic pancreas by entering their body weight into the device’s dosing software at the time of first use.

Users of the bionic pancreas also do not have to count carbohydrates, nor initiate doses of insulin to correct for high blood glucose. In addition, healthcare providers do not need to make periodic adjustments to the settings of the device.

The 13-week trial, conducted at Children’s National and 15 other clinical sites across the United States, enrolled 326 participants ages 6 to 79 years who had Type 1 diabetes and had been using insulin for at least one year. Participants were randomly assigned to either a treatment group using the bionic pancreas device or a standard-of-care control group using their personal pre-study insulin delivery method. All participants in the control group were provided with a continuous glucose monitor, and nearly one-third of the control group were using commercially available artificial pancreas technology during the study.

In participants using the bionic pancreas, glycated hemoglobin, a measure of a person’s long-term blood glucose control, improved from 7.9% to 7.3%, yet remained unchanged among the standard-of-care control group. The bionic pancreas group participants spent 11% more time, approximately 2.5 hours per day, within the targeted blood glucose range compared to the control group. These results were similar in youth and adult participants, and improvements in blood glucose control were greatest among participants who had higher blood glucose levels at the beginning of the study.

Hyperglycemia, or high blood glucose, caused by problems with insulin pump equipment, was the most frequently reported adverse event in the bionic pancreas group. The number of mild hypoglycemia events, or low blood glucose, was low and was not different between the groups. The frequency of severe hypoglycemia was not statistically different between the standard of care and bionic pancreas groups.

Four companion papers were also published in Diabetes Technology and Therapeutics, two of which provided more detailed results among the adult and youth participants. The third paper reported results from an extension study in which the participants from the standard-of-care control group switched to using the bionic pancreas for 13 weeks and experienced improvements in glucose control similar to the bionic pancreas group in the randomized trial. In the fourth paper, results showed that using the bionic pancreas with a faster-acting insulin in 114 adult participants improved glucose control as effectively as using the device with standard insulin.

“The results of this study will bring hope to patients, families and providers that there are technologies being created to help ease the burden of diabetes management and keep glucose levels more stable,” said Kimberly Boucher, M.S.H.S., B.S.N., R.N., clinical research manager of Endocrinology at Children’s National.

The study is one of several pivotal trials funded by NIDDK to advance artificial pancreas technology and look at factors including safety, efficacy, user-friendliness, physical and emotional health of participants, and cost. To date, these trials have provided the important safety and efficacy data needed for regulatory review and licensure to make the technology commercially available. The Jaeb Center for Health Research in Tampa, Florida, served as coordinating center.

Funding for the study was provided by NIDDK grant 1UC4DK108612 to Boston University, by an Investigator-Initiated Study award from Novo Nordisk, and by Beta Bionics, Inc., which also provided the experimental bionic pancreas devices used in the study. Insulin and some supplies were donated by Novo Nordisk, Eli Lilly, Dexcom and Ascensia Diabetes Care. Partial support for the development of the experimental bionic pancreas device was provided by NIDDK SBIR grant 1R44DK120234 to Beta Bionics, Inc.

The NIDDK, a component of the NIH, conducts and supports research on diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic, and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe and disabling conditions affecting Americans. Learn more about the NIDDK and its programs.


About the National Institutes of Health (NIH)

NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov/. NIH…Turning Discovery Into Health®

Media Contacts

About Children’s National Hospital