What I’ve Learned About the Brain
As a Pediatric Cardiac Intensivist

Gil Wernovsky, MD, FAAP, FACC
Senior Consultant in Pediatric Cardiology
and Cardiac Critical Care

©2018 Gil Wernovsky
Outline: Part I

- Congenital Heart Disease (CHD) Made Easy
- The Normal Fetal Circulation
- The Transitional Circulation
- The Fields of Pediatric Cardiology and Congenital Heart Surgery mid 1950’s- mid 2010’s
- The Two Most Important Innovations That Changed Everything in My Field
Congenital Heart Disease

• 1:100 Live Births – 40,000 year in USA
• ~ 1/3 require surgery in first months of life ~11,000/year
• Although there are hundreds of specific types of CHD, they may be broadly classified, alone or in combination:
 1. Holes
 2. Narrowings
 3. All Parts are Present, but Arranged Abnormally
 4. Missing Parts

• Without urgent treatment, most of these 11,000/year infants die during the transitional circulation
Fetal Circulation

In a Fetus with a Structurally Normal Heart

• Oxygenated Umbilical Venous Blood From the Placenta travels to Right Atrium Through the Ductus Venosus and is Directed to the Left Atrium.

• This Oxygenated Blood is Preferentially Ejected to the Brain and Coronary Arteries

• Deoxygenated Blood from the upper and lower body is directed to the lower body and through the Umbilical Arteries to the Placenta
Fetal Circulation -> Normal Transitional Circulation Anatomic Changes

- Closure of the ASD
- Closure of the Ductus Arteriosus
- Closure of the Ductus Venosus
Fetal Circulation -> Normal Transitional Circulation: Physiologic Changes

Clamping of Umbilical Cord

Lung Expansion
Fetal Circulation -> Normal Transitional Circulation: Physiologic Changes

Loss of Low Resistance Placenta -
↑ Systemic Vascular Resistance (SVR)

Lung Expansion
↓ Pulmonary Vascular Resistance (PVR)
It Had Been Known Since the 1930s Babies with Critical Congenital Heart Disease Died in the First Few Days-Weeks of Life

Specifically: Closure of the Ductus Arteriosus
Specifically: Closure of the Ductus Arteriosus
All of What We Do in the care of Complex CHD Would Not Have Happened Without Two Major Breakthroughs in the Mid 1970’s:

- Prostaglandin
- “Portable” Echocardiography
Beginning in the Late 1970’s-Early 1980’s Children with Previously Lethal CHD Started to Survive

Many are Now in their 30’s
“Half of What I’m Teaching You is Wrong
The Problem Is:
I Don’t Which Half It Is”
My Second Year of Fellowship: “Truths”
1986 Things I *Knew* Were True

1. A Good Operation “Fixes Everything”
2. Majority of Babies Were Normal Except For Their Heart
3. Seizures Were Not a Bad Prognostic Sign
 • “Baby Twitches”
4. Cardiac Surgeons Were Good Pediatric Neurologists
1985 – 1995: We Learned That, In Reality, All Was *Not* Well

Why Am I Here: A Pediatric Cardiac Intensivist????

- The unique position of the pediatric cardiologist with clinical perspective from ICU, (or even before birth), through young adulthood
 - “How the Blood Goes Around”
- A good operation doesn’t fix everything
- Many kids were having trouble meeting developmental milestones
It Must Be the Surgery!!!
The “Boston Circulatory Arrest Study”
1988-1992

- NIH Sponsored Randomized Clinical Trial Comparing Neurological Outcomes of Cardiac Surgery Utilizing Deep Hypothermic Circulatory Arrest vs Low-Flow Bypass
- 4 years of enrollment
- Co-PIs: Richard Jonas and Jane Newburger
Transposition (TGA) Planned Arterial Switch
N = 191

Met Eligibility Criteria Parental Consent
180/191 (94%)

TGA/IVS
N = 129
Age ~ 7 ± 4 days

TGA/VSD
N = 42
Age = 18 ± 19 days

Low Flow Bypass
N = 63

Circulatory Arrest
N = 66

Low Flow Bypass
N = 21

Circulatory Arrest
N = 21

Survivors
168

Patients
171

Died
N = 3

191 Eligible

180 Consented
A COMPARISON OF THE PERIOPERATIVE NEUROLOGIC EFFECTS OF HYPOTHERMIC CIRCULATORY ARREST VERSUS LOW-FLOW CARDIOPULMONARY BYPASS IN INFANT HEART SURGERY

JANE W. NEWBURGER, M.D., M.P.H., RICHARD A. JONAS, M.D., GIL WERNOVSKY, M.D.,
DAVID WYPJ, PH.D., PAUL R. HICKEY, M.D., KARL C.K. KUBAN, M.D., S.M.,
DAVID M. FARRELL, M.A., C.C.P., GREGORY L. HOLMES, M.D., SANDRA L. HELMERS, M.D.,
JULES CONSTANTINOU, F.R.A.C.P., ENRIQUE CARRAZANA, M.D., JOHN K. BARLOW, M.D.,*
AMY Z. WALSH, R.N., B.S.N., KRISTIN C. LUCIUS, R.N., M.S., JANE C. SHARE, M.D.,
DAVID L. WESSEL, M.D., FRANK L. HANLEY, M.D., JOHN E. MAYER, JR., M.D.,
ALDO R. CASTANEDA, M.D., AND JAMES H. WARE, PH.D.
Perioperative Results

Table 3. Neurologic Outcomes after Surgery, According to Ventricular Septal Status and Treatment Group.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>INTACT VENTRICULAR SEPTUM</th>
<th>VENTRICULAR SEPTAL DEFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CIRCULATORY ARREST</td>
<td>LOW-FLOW BYPASS</td>
</tr>
<tr>
<td></td>
<td>no. with abnormality/total no. (%)</td>
<td>p value*</td>
</tr>
<tr>
<td>Within 7 days after surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definite clinical seizures</td>
<td>5/66 (8)</td>
<td>0/63</td>
</tr>
<tr>
<td>48-Hr continuous EEG†</td>
<td>9/58 (16)</td>
<td>6/49 (12)</td>
</tr>
<tr>
<td>Ictal activity‡</td>
<td>288 (72, 227)</td>
<td>181 (32, 85)</td>
</tr>
<tr>
<td>Recovery time (min)</td>
<td>21 (15, 45)</td>
<td>13 (4, 18)</td>
</tr>
<tr>
<td>First activity</td>
<td>139</td>
<td>57</td>
</tr>
<tr>
<td>Close bursts</td>
<td>1140 (143, 366)</td>
<td>1079 (66, 309)</td>
</tr>
<tr>
<td>Relative continuous</td>
<td>(541, 1740)</td>
<td>(602, 1626)</td>
</tr>
<tr>
<td>Continuous</td>
<td>59</td>
<td>43</td>
</tr>
<tr>
<td>CK-BB release (IU/liter)†</td>
<td>32 (84)</td>
<td>15 (88)</td>
</tr>
</tbody>
</table>
Probability of Clinical Seizures

Note: non-linear relationship

$p = .004$
At 16 Years the Groups Were Essentially Similar in all Neurodevelopmental Domains
The "Neurodevelopmental Phenotype" Associated With Complex Congenital Heart Disease
Executive Function

- Impulse Control/Self Regulation
- Working Memory
- Attention
- Flexibility
- Planning

Adaptive Function

- Independence in ADLs
- Academic Function
- Motor

Autism Spectrum

- Theory of Mind
- Alexithymia

Cognition

- Mild Decrease

Speech & Language

- Expressive Language & Articulation
- Receptive Language Intact

Behavioral

- Oppositionality/Defiance
- Anxiety, Depression
- ADHD

Motor

- Fine Motor/Visual-Spatial Integration
- Oral Motor Coordination/Feeding
- Gross Motor/Clumsiness
Developmental and Neurological Status of Children at 4 Years of Age After Heart Surgery With Hypothermic Circulatory Arrest or Low-Flow Cardiopulmonary Bypass

David C. Bellinger, PhD, MSc; David Wyij, PhD; Karl C. Kaban, MD, MSc; Leonard A. Rapoport, MD; Paul R. Hickey, MD; Gil Wernovsky, MD; Richard A. Jonas, MD; Jane W. Newburger, MD, MPH

Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: The Boston Circulatory Arrest Trial

David C. Bellinger, PhD, MSc; David Wyij, PhD; MSc; Marc J. Pitman, MD; Leonard A. Rapoport, MD; Richard A. Jonas, MD; Gil Wernovsky, MD, MPH

Adolescents With d-Transposition of the Great Arteries Corrected With the Arterial Switch Procedure: Neuropsychological Assessment and Structural Brain Imaging

David C. Bellinger, PhD, MSc; David Wyij, PhD; Michael J. Rubik, MD; David B. DeMarco, MD; Richard L. Robertson, Jr, MD; Carlyle Dorlus-Manzanares, BSN, RN; Leonard A. Rapoport, MD; Gil Wernovsky, MD; Richard A. Jonas, MD; Jane W. Newburger, MD, MPH

©gilwernovsky2018
Total Cost (through 30 year Adult Study) in $2018 dollars

$19,447,000

Age 8 - N=155 (97% of eligible)
Age 4 - N=158 (97% of eligible)
Age 16 - N=139 (87% of eligible)
N ~ 100 (~67% of eligible)
Age 1 - N=155 (92% of eligible)

Periop 1, 4, 8 years ~ $13M
16 years ~ $3.5M
Ongoing Adult Study ~ $3M
By 1995:

It’s Not the Surgery!!!

- Now that we had many more survivors, research into the “Brain-Heart Axis” began
 - **Defining the phenotype**
 - Recognizing that CNS risk factors are multiple and cumulative
 - Cardiopulmonary Bypass played a role, but it was relatively minor
 - Collaborative Research
 - **Surgeons, anesthesiologists now embraced Pediatric Neurologists**
Today is actually my 29th birthday and two weeks ago my wife and I had our first child. Due to my heart defect our child had to have a fetal echo (everything was perfect) and I...