Title: Placental gene expression, obstetrical history and polygenic risk for schizophrenia

Authors: Gianluca Ursini1,2, Giovanna Punzi1,2, Qiang Chen1, Stefano Marenco3, Joshua F. Robinson4, Annamaria Porcelli2, Emily G. Hamilton4, Giancarlo Maddalena2, Andrew E. Jaffe1, Karen F. Berman3,5, Michael F. Egan6, Richard E. Straub1, Carlo Colantuoni1, Giuseppe Blasi2, Dan Rujescu7, Ryota Hashimoto8, Hannelore Ehrenreich9, Alessandro Bertolino2, and Daniel R. Weinberger1,10,*

Affiliations:

1Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
2Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
3Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
4Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
5Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
6Merck Research Laboratories, Merck and Co., Inc., Whitehouse Station, NJ, USA
7Department of Psychiatry, Psychotherapy, and Psychosomatics, Martin Luther University of Halle-Wittenberg, Halle, Germany
8Molecular Research Center for Children's Mental Development, United Graduate School of Child Development and Department of Psychiatry, Osaka University, Osaka, Japan
9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
10Departments of Psychiatry, Neurology, Neuroscience, and the McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
Abstract text:

Early life events associated with placental pathophysiology influence later susceptibility to many adult diseases and may contribute to define the environmental context in which genes enhance risk for complex disorders like schizophrenia. Here we analyze the role of intrauterine and perinatal complications (Early Life Complications, ELCs) and placental gene expression in modulating the association of schizophrenia with genomic risk, as measured with polygenic risk scores (PRS) based on GWAS significant variants. We found that PRS interacts with ELCs on case-control status, in three independent samples from USA, Italy and Germany (n= 1693, p= 6e-05); in each sample the variance of schizophrenia explained by PRS is multiplicatively higher in the presence of a history of ELCs compared with the absence of ELCs. The relationship between PRS and ELCs is replicated in two independent samples of only cases from Germany and Japan (n=2038, p=1e-04). The gene-set based on the schizophrenia loci interacting with ELCs is highly expressed in multiple placental tissues (p<0.001) and dynamically regulated in placental samples from complicated, in comparison with normal, pregnancies (p<0.05). These differences are significantly greater in placentae from male compared with female offspring (p<10^-8). GWAS SNPs marking the loci containing genes highly expressed and dynamically modulated in placenta (PlacPRS genes) drive the interaction between PRS and ELCs (p=0.002), while PRS constructed from the remaining loci do not interact with ELCs (NonPlacPRS, p=0.60). Pathways and biological functions associated with NonPlacPRS genes are reminiscent of previous analyses about schizophrenia risk-genes, while PlacPRS genes implicate an orthogonal biology, with roots in the fetal/placental response to hypoxic stress. Our data suggest that the most significant schizophrenia
GWAS variants contribute to risk by converging on a developmental trajectory sensitive to ELCs and altered placental gene expression, which may underlie the male preponderance of schizophrenia and offer new insights into primary prevention.