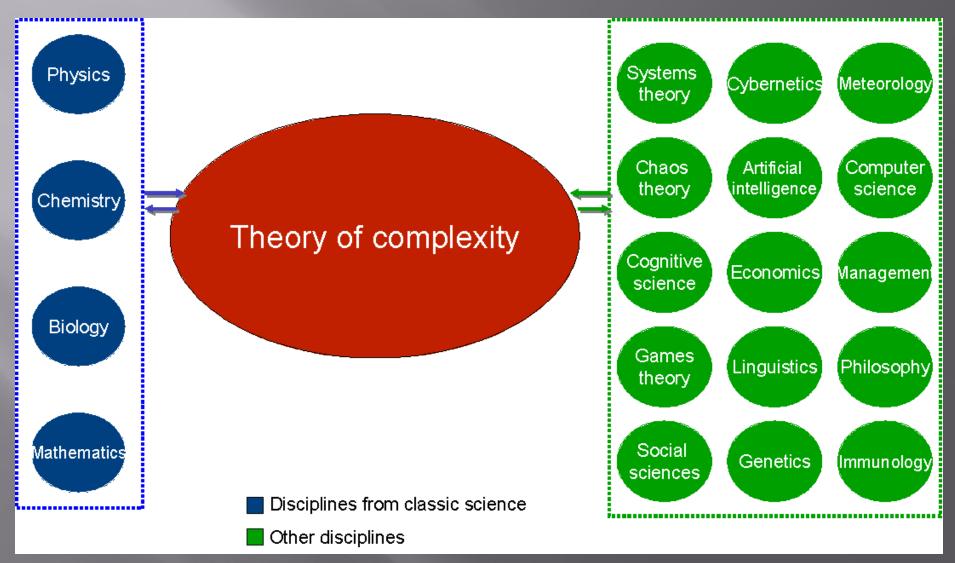


DiscerningHealth.org

COMPLEXITY AND CRITICAL CARE


Peter R. Holbrook, MD

Professor Emeritus, George Washington University School of Medicine Founder, DiscerningHealth

Disclosure

 Dr. Holbrook is the Founder of DiscerningHealth, a company dedicated to discern the issues in healthcare to facilitate better decision-making

Caveats

- Complexity knowledge is large, expanding
- No unifying/defining theory of complexity is recognized/accepted
- Apparent conflicts with classical physics exist (entropy)
- Many new ideas, fewer solutions

Classical Science

- Isaac Newton (1642-1727)
- Cause and effect, mechanistic, predictable, linear
- Scientific method: Break down problem into component parts, analyze, reassemble; i.e. reductionist
- "If you fully know the past and the extant forces, you can know the future." LaPlace (paraphrase)
- Results over last 350 years impressive

Limitations to Classical Science

- Variances at the extremes
- Total often greater than sum of parts
- Most of the world is not linear
 - Non elephants.

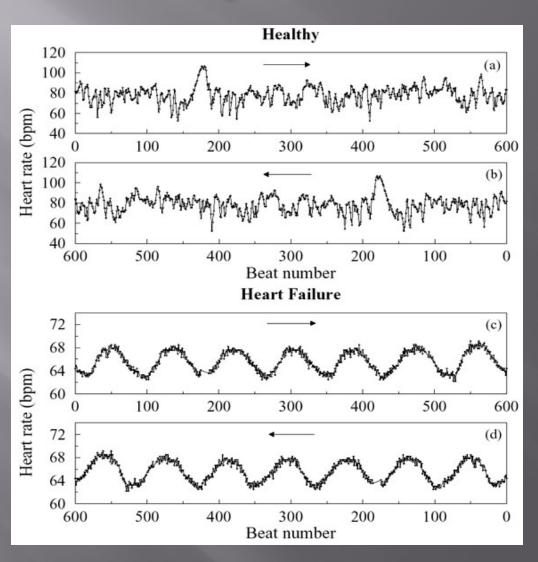
Ulam 1991

 "Every major unsolved problem in science from consciousness to cancer... is non-linear".

Strogatz 2003

 Serious challenges: Relativity and quantum physics

Inanimate

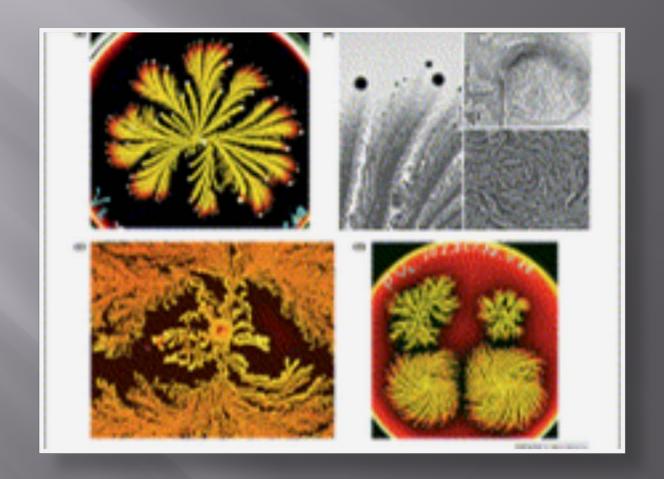

- Independent agents
- No central control
- Able to interact
- Information processing
- Emerging phenomenon
- Synchronization

Synchronization

- Pacemakers (cardiac, respiratory)
- Peristalsis
- Circadian rhythms
- Seizures

Cardiac rhythm and health

Animate



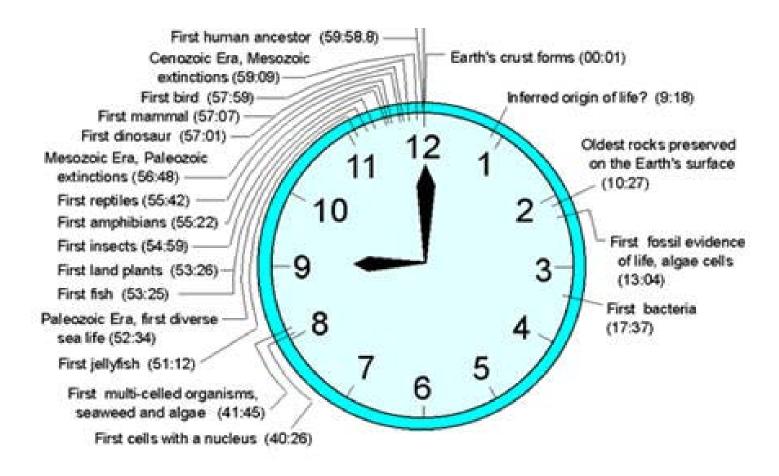
<u>Paenibacillus dendritiformis</u>

Ben-Jacob, Biology and Science, 2010

<u>Paenibacillus dendritiformis</u> colony under stress

DiscerningHealth.org

Ben-Jacob, Scientific American, 2009



Colony achievements

- Information sensing
- Information processing
- Signal broadcasting
- Computation
- Differentiation
- Communication, at distance
- Cooperation
- Antibiotics
- Time travel

How did they do that...?

- ... with multiple independent agents?
- ... without a "brain", "planner", or "boss"; No central nervous system, no central control?
- Answer? Genetic mechanisms (DNA, RNA, proteins)
- Success? Life has spread everywhere: thermal vents, under ice, hospital rooms

Earth history in one hour

DiscerningHealth.org

- Unique environments
- Biomes evolve for all
- □ 1-3% mass, 90% of DNA
- GI biome essential for digestion – the "extra organ"
- Bacteria manifest both Individual and colony behavior

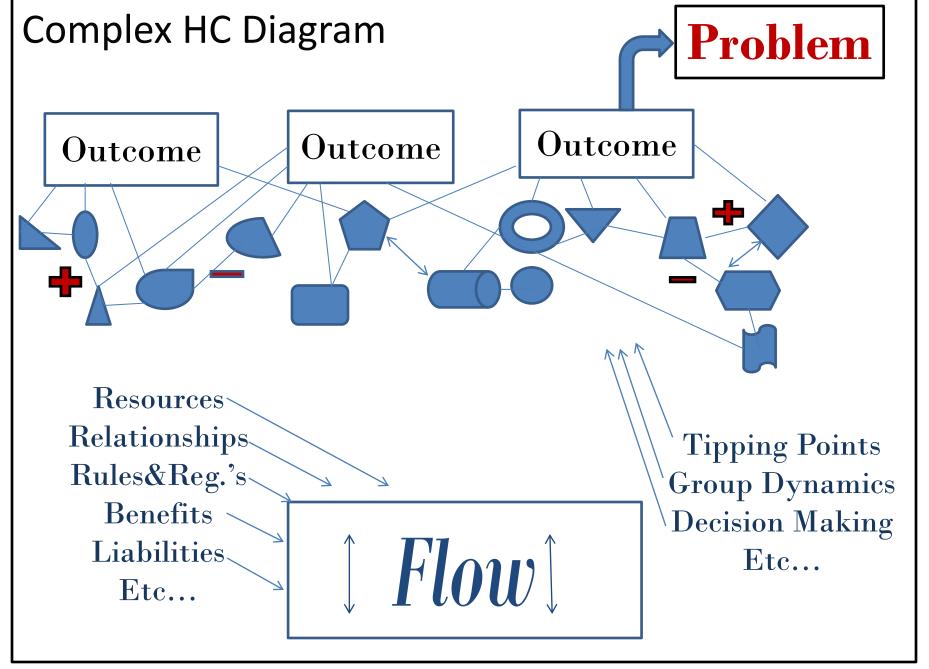
Human view of bacteria

- Reductionist
- Germ theory of disease
- One (dumb) bug, one good drug
- Misuse antibiotics
- Abhor bacteria
- Force antibiotic resistance
- Altered biomes create additional problems

Human created pathology

- Opportunistic, multiple drug resistant organisms (MRSA, <u>C.dif</u>)
- Hospital acquired infections
- Allergic phenomena
- Skin conditions

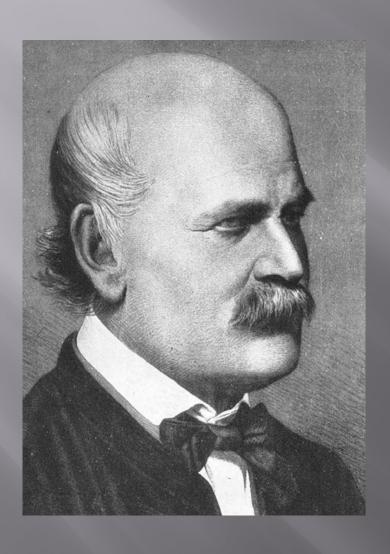
Biomic therapy


- Recurrent <u>C. difficile</u> Infection
 - Fecal bacteriotherapy.fecal microbiota transplantation (Eat poo!)
 - 92% effective (87% after one dose)
 - Gough, Clinical Infectious Diseases, 2011
- Mouth cleaning of pacifiers
 - Reduced asthma, eczema, sensitization
 - Hesselmar, Pediatrics, 2013
- Vaginal birth vs. C-section
 - Reduced food allergy
 - Kopel, Ped Allergy and Immunology, 2008
- Terminal wipe down with local biome?

Complexity begets complexity

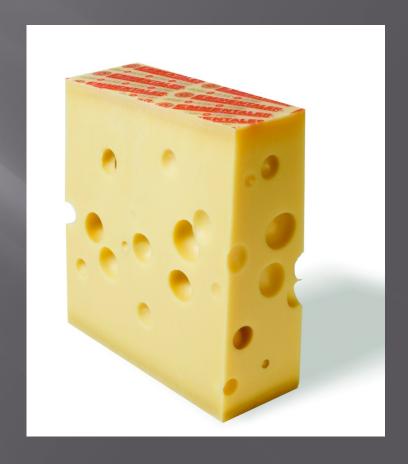
- Amazing properties even in prokaryotes
- Prokaryotes become Eukaryotes become multi-cellular organisms become complex individuals with specialized tissues, organs.
- Only then a central nervous system and "central control"
- Individuals form complex adaptive systems (family units, tribes, alliances, nations, ...)
- Individuals join many complex adaptive systems (work, social, special interest groups ...)
- Each grouping imposes restrictions, but "wild type" is not forgotten
- Each system creates new emergent behavior

Complex Adaptive Systems


- Multiple Independent agents
- Able to interact
- Self organize
- No central control
- Emergent Phenomena

Complex Healthcare Examples

- Hand washing
- Errors
- Expense
- Population health
- Refractory decisions


Hand washing

- Semmelweis, 1847/65
- Multiple observations:
 - People don't consistently wash
 - Docs worst
 - Programs always succeed
 - Results never last
- Lesson: If it is refractory, it is probably complex

Errors

- Very few individual mistakes, never intentional
- Many systemic errors
 - Circadian rhythms
 - Trainees and education
 - Alarm fatigue
- Overanalyze the mistakes, under-study near misses; ignore normals
- Thousands of normals intermingle with a few bad outcomes
- Lesson: Big data sets will be required. Statistical mechanics. What is more important than why

Expense

- Why does health care cost so much?
 - Because it can!
 - Money was part of the initial flow; Cost control was not
 - Restraint elicits negative feedback
- But, money flow is receding
- *Lesson:* Complex systems are not in equilibrium; depend on continuous flow

Population Health

- Population health was not in the initial flow which resulted in the sickness care system
- Now, reduced reimbursement for readmissions or changes in money flow related to sustained health

■ *Lesson:* Nudge the flow. Small adjustments to the contents of the flow can have big results

Refractory Decisions

- Agents may not know why they took an action
 - Peer pressure
 - Tipping points
 - Resource pressure
 - Interpersonal issues
 - Unrelated issues
- Don't get mired in metadata. Don't interview starlings.

Complexity and Critical Care

- Pathologic process complex system
- The physiologic responses complex systems
- The ICU itself complex adaptive system nestled within another complex system (the hospital) nestled within ...

Intensivists and complexity

- Increase the flow rate (fluids)
- Minimize deleterious feedback loops (work of breathing)
- Alter the flow contents (remove toxins, add therapeutic agents)
- Eliminate system conflicts (sedation/paralysis)
- Titrate positive and negative feedback
- Formulate problems in complex fashion

Why do some issues go away?

Linear solutions work

- Prevention
 - <u>H. influenza</u> epiglottitis
 - Sudden Infant Death Syndrome
 - Near Drowning
 - Motor vehicle trauma
 - Reye Syndrome

Why do some issues persist?

- Linear solutions don't work
 - Opportunistic, hospital acquired, "superbugs"
 - Sepsis Looking for the magic bullet
 - Inherently complex issues: e.g.
 Respiratory/cardiac/immune failure

Resistance to complexity

- Not how we think
- Not at human scale
- Not yet familiar with the tools
- Multi and cross disciplinary
- Questions established dogma

Complex adaptive system Observations

- If it is refractory, it is probably complex
- What is more important than why. Big data sets will be required. Statistical mechanics
- Complex systems are not in equilibrium; depend on continuous flow
- Nudge the flow. Small adjustments to the contents of the flow can have big results
- Don't interview starlings. Don't get mired in metadata

Don't just DO something!
Stand there ...
...and think of complexity